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Symbolic stochastic dynamical systems viewed as binaly-step Markov chains
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Atheory of systems with long-range correlations based on the consideratimaoy N-step Markov chains
is developed. In the model, the conditional probability thatitilesymbol in the chain equals zefor unity)
is a linear function of the number of unities among the precetlimymbols. The correlation and distribution
functions as well as the variance of the number of symbols in the words of arbitrary lerayth obtained
analytically and numerically. A self-similarity of the studied stochastic process is revealed and the similarity
group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the
distribution function of theL words is explored. If the persistent correlations are not extremely strong, the
distribution function is shown to be the Gaussian with the variance being nonlinearly dependent o
applicability of the developed theory to the coarse-grained written and DNA texts is discussed.
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[. INTRODUCTION ematical objectfor example, a correlated sequence of sym-
bols) possessing the same statistical properties as the initial
The problem of systems with long-range spatial and/olsystem. There are many algorithms to generate long-range
temporal correlation$LRCS) is one of the topics of inten- correlated sequences: the inverse Fourier transf@mthe
sive research in modern physics, as well as in the theory d#xpansion-modification Li methd@®], the Voss procedure of
dynamical systems and the theory of probability. The LRCcCONsequent random additi¢h0], the correlated Levy walks
systems are usually characterized by a complex structure andll, etc.[8]. We believe that, among the above-mentioned
contain a number of hierarchic objects as their subsystem&1ethods, using the Markov chains is one of the most impor-
The LRC systems are the subject of study in physics, biolfant. We would like to demonstrate this statement in the
ogy, economics, linguistics, sociology, geography, psycholPresent paper.
ogy, etc.[1-4]. At the present time, there is no generally [N the following sections, the statistical properties of the
accepted theoretical model that adequately describes the djinary many-step Markov chais examined. In spite of the
namical and statistical properties of the LRC systems. Atlong-time history of studying Markov sequencésee, for
tempts to describe the behavior of the LRCS in the frame€xample[4,12,13 and references therginthe concrete ex-
work of the Tsalis nonextensive thermodynan{iss] were pressions for the variance of sums of random variables in
undertaken in Ref[7]. However, the nonextensive thermo- Such strings have not yet been obtained. Our model operates
dynamics is not well-grounded and requires the constructioM/ith two parameters governing the conditional probability of
of the additional models which could clarify the properties ofthe discrete Markov process, specifically with the memory
the LRC systems. length N and the correlation parametgr. The correlation
One of the efficient methods to investigate the correlatednd distribution functions as well as the variarigebeing
systems is based on a decomposition of the space of statBgnlinearly dependent on the lendtiof a word are derived
into a finite number of parts labeled by definite Symbo|3,analytically and calculated numerically. The nonlinearity of
This procedure referred to as coarse graining is accompanidfie D(L) function reflects the existence of strong correla-
by the loss of short-range memory between states of systefiPns in the system. The evolved theory is applied to the
but does not affect and does not damage its robust invaria§oarse-grained written texts and dictionaries, and to DNA
statistical properties on large scales. The most frequentl§trings as well.
used method of the decomposition is based on the introduc- Some preliminary results of this study were published in
tion of two parts of the phase space. In other words, it conRef. [14].
sists in mapping the two parts of states onto two symbols,
say 0 and 1. Thus the problem is reduced to investigating the Il. FORMULATION OF THE PROBLEM
statistical properties of the symbolic binary sequences. This
method is applicable for the examination of both discrete and
continuous systems. Let us consider a homogeneous binary sequence of sym-
One of the ways to get a correct insight into the nature obols, a;={0,1}. To determine theN-step Markov chain
correlations consists in an ability of constructing a math-we have to introduce the conditional probability

A. Markov processes

P(ajlai_n,a_N+1s- - - »8i—1) Of occurring the definite sym-
bol a (for example, a=0) after symbols
*Email address: usatenko@ire.kharkov.ua a_N,ai_Ni1s---,Q_1. Thus, it is necessary to definé' 2
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values of theP-function corresponding to each possible con-  Taking into account the symmetry of the conditional prob-

figuration of the symbols; _y,aj_ni1,---,3_1. We sup-  ability P with respect to a permutation of symbols a; [see Eq.
pose that thé> function has the form (2)], we can simplify the notations and introduce the condi-
N tional probability p; of occurring the symbol zero after the N
1 word containing & unities, e.g., after the word
P(ai=0|aj_n,8-N+1, - - 8i-1) Ng f(ai-k.k) (11...100...0),
(1) k N—k

1 2k
pr=Play,1=0[11...1 00...0= E-I—,u,( 1- W)]’ (5)

Here the valud(a;_,k)/N is the contribution of the sym- —_— —'—’ /

k
bol a;_ to the conditional probability of occurring the sym- ith the correlation parametar being defined by the rela-
bol zero at théth site. Relatior(1) corresponds to the addi- tjgn

tive influence of the previous symbols on the generated one.

The homogeneity of the Markov chain is provided by the 1
independence of the conditional probability Hd) of the u=7(0)— 75 (6)
indexi.

It is reasonable to assume the functiolo be decreasing
with an increase of the distan&eetween the symbols;
and a; in the Markov chain. However, for the sake of sim-
plicity we consider here a steplike memory function
f(a;_k,k) independent of the second argumkrs a result,
the model is characterized by three parameters only, speci

We focus our attention on the region a@fdetermined by
the persistence inequality<OQu<<1/2. In this case, each of
the symbols unity in the precediny word promotes the
birth of new symbol unity. Nevertheless, the major part of
ifour results is valid for the antipersistent regienl/2<u

: <0 as well.
cally by f(0), f(1), andN:
y by £(0). (1) A similar rule for the production of anN word
(a1, . ..,ay) that follows after a word &5,a1,....8ny-1)
1 was suggested in Ref4]. However, the conditional prob-
P(ai=0[a_n,ai_N+1s---8i-1)= N kZl f(a;_). (2)  ability p of the symbolsay occurring does not depend on

the previous ones in the modél].

Note that the probability? in Eq. (2) depends on the num- B. Statistical characteristics of the chain

bers of symbols 0 and 1 in thé word but is independent of In order to investigate the statistical properties of the Mar-
the arrangement of the elemeiats . We also suppose that kov chain, we consider the distributiof, (k) of the words
of definite lengthL by the numbek of unities in them,

£(0)+f(1)=1. 3 -
(@) 9 ki(L)=|§1 A, @)

This relation provides the statistical equality of the numbers
of symbols zero and unity in the Markov chain under con-
sideration. In other words, the chain is nonbiased. Indeed,

and the variance df,

taking into account Eqgs(2) and (3) and the sequence of D(L)=k*~I, ®
equations,
where
Pa=1la_y,....a- )=1—P(a-=0|a'— beeeBio1) oS
i=1lai_y i-1 i=0[a i-1 f(k)zgof(k)WL(k)- ©

If =0, one arrives at the known result for the noncorre-

—P(a=0[3_y,... 3 1), 4 lated Brownian diffusion,

D(L)=L/4. (10)

gne can see the SY”‘”“"‘”Z V\{'th respect to mterchlangeai We will show that the distribution functioiV, (k) for the

in the Markov chain. Here; is the symbol opposite tg;, sequence determined by EG) (with nonzero but not ex-
aj=1-a;. Therefore, the probabilities of occurring the tremely close to 1/2 parametgr) is the Gaussian with the
words @4, ...,a.) and @4, ...,a.) are equal to each other variance D(L) nonlinearly dependent oh. However, at
for any word lengthL. At L=1 this yields equal average w— 1/2 the distribution function can differ from the Gauss-
probabilities that symbols 0 and 1 occur in the chain. ian.
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This yields the recursion relation for b(k)
0.008 T 4 =b(11...100...0),
] — S
k N—k
0.007 | ‘
1 1— Py N—2u(N—2k+2)
b(k)= b(k—1)= b(k—1).
< 0.008 ] (k) Px (k=1) N+2u(N—2k) (k=1)
3_ we o [ ° [ o oom (13)
0.005 7 The probabilitiesb(k) for >0 satisfy the sequence of in-
equalities,
oooe { L L L IMRL LI
] b(0)=b(N)>b(1)=b(N—1)>--->b(N/2), (14
0003 v " 5 100 150 200 250 which is the reflection of persistent properties for the chain.
z At w=0 all probabilities are equal to each other.

. ) The solution of Eq(11) is
FIG. 1. The probabilityb of a word occurring ,,a,, . . . , ay)

vs its number expressed in the binary codes 3]\ ;a;x 2! "1, for b(k)=A-T'(n+k)I'(n+N—Kk) (15
N=8, u=0.4.
with the parameten defined by
C. Main equation N(1—2p)

For the stationary Markov chain, the probability n= A (16)
b(aja, ...ay) of occurring a certain worda ,a,, . .. ,ay)
satisfies the condition of compatibility for the Chapman-The constanA will be found below by normalizing the dis-
Kolmogorov equatior(see, for example, Ref15]): tribution function. Its value is

b(a;...ay)= >, b(aa;...ay_1) A= 47 T2 17)
Lo O S Lo EN "2z T(NT(2n+N)’

XP(ayla,a,...,an_1). 11
(anla.ay N-1) (1D IIl. DISTRIBUTION FUNCTION OF L WORDS

Thus, we have 2 homogeneous algebraic equations for the In this section we investigate the statistical properties of

2N probabilitiesb of the N words occurring and the normal- the Markov chain, specifically, the distribution of the words

ization equatior=b=1. In the case under consideration, the of definite lengthL. by the numbek of unities. The lengti.

set of equations can be substantially simplified owing to thecan also be interpreted as the number of jumps of some par-

following statement. ticle over an integer-valued 1D lattice or as the time of the
Proposition 1 The probability {a,a, . . . ay) depends on diffusion imposed by the Markov chain under consideration.

the number k of unities in the N word onlye., it is inde-  The form of the distribution functiow (k) depends, to a

pendent of the arrangement of symbols in the wordarge extent, on the relation between the word lerigénd

(a,a,,....,y)- the memory lengtiN. Therefore, the first thing we will do is
This statement illustrated by Fig. 1 is valid owing to the to examine the simplest cate=N.

chosen simple mod€R), (5) of the Markov chain. It can be

easily verified directly by substituting the obtained below A. Statistics of N words

solution (15) into the set(11). Note that, according to the The valueb(k) is the probability that am word contains

Markov theorem, Eqs(11) do not have other solutiond6]. ynities with adefiniteorder of symbolsa; . Therefore, the
Proposition 1 leads to the very important property of 'SOt'probabiIity Wy (k) that anN word containsk unities with

ropy: any word @;,az, . . . ,a.) appears with the same prob- apitrary order of symbols, is b(k) multiplied by the num-
ability as the inverted onea( ,a, -y, . .. ). berCK=N!/k!(N—k)! of different permutations dk unities
Let us apply the set of Egs. (11) to the word  jn the N word,
(11...1 00...0):
—_ Wi(k) = Cib(k). (18)
Combining Eqgs(15) and(18), we find the distribution func-
b(11...1 00...0)=h(011...1 00...0)p; tion,
—_— ——— —_—— ——
kooNk BNkl T(n+k)(n+N-k)

Wy(K) =Wy(0)Ck

I'(n)['(n+N) (19
+b(111...1 00...0)p; ;.
—_— The normalization constai/y(0) can be obtained from the

EooNeke (12 equality Sp_oWy(K)=1,

061107-3



USATENKO et al. PHYSICAL REVIEW E 68, 061107 (2003

4" T(n+N)T(1/2+n)
2J7  T(2n+N)

Comparing Eqgs(15), (18)(20), one can get Eq17) for the At n#1, Wy(k) has a maximum in the middle of the inter-

1
(20) Wh(K) = (27)

Wy (0) = N+1°

constantA in Eq. (15). val [ON].

Note that the distributioWy(k) is an even function of o _
the variablex=k—N/2, 3. Limiting case of strong persistence

If the parameten satisfies the inequality,

_ _ _ _ n<In—IN, (28)
This fact is a direct consequence of the above-mentioned
statistical equivalence of zeros and unities in the Markovgr
chain being considered. Let us analyze the distribution func-
tion Wy (k) for different relations between the parametidrs 1-2u<1MNIn(N), f(1)<1/NIn(N), (29

and w.
then one can neglect the parametén the arguments of the
1. Limiting case of weak persistence 3l functionsI'(n+k), I'(n+N), and'(n+N—k) in Eq. (19).
In this case, the distribution functiowy(k) assumes its

In terms of the correlation parameter this limiting case maximal values ak—0 andk=N,

corresponds to the values pf not very close to 1/2,

N
1-2u 1 Wa(1) = n
>_ n(1)=Wy(0) <Wy(0). (30)
m > N (22 N—1
This inequality can be rewritten via tiefunction[see Eqs. Formula(30) describes the sharply decreasiig(k) ask
(2)-(6)], varies from 0 to 1(and fromN to N—1). Then, at Kk
<N/2, the functionWy(k) decreases more slowly with an
f(1) . 1 23 increase irk,
f(0)—f(1) N’ 23
In the absence of correlations;—, Eq. (19) and the Wiy(k) =Wn(0) k(N—K) " (31)
Stirling formula yield the Gaussian distribution &fN,N
—k>1. Given the persistence is not too strong, At k=N/2, the probability Wy(k) achieves its minimal
value,
ns>1, (24)
4n
one can also obtain the Gaussian form for the distribution Wi| 5| =Wn(0) - (32
function,

It follows from normalization (20) that the values

Wi(K) = 1 exp{ _ (k—N/2)2] (25) Wy (0)=Wy(N) are approximatively equal to 1/2. Neglect-
J27D(N) 2D(N) |’ ing the terms of the order af?, one gets
with the x-dependent variance, Wi (0)= %(1_ nInN). (33
N(N+2n) N
D(N)= = . (26) . . .
8n 4(1-2u) In the straightforward calculation using E¢8) and(31) the
varianceD is

Equation(25) says that the\ words with equal numbers of
zeros and unitiedk=N/2, are most probable. Note that the N? nN(N-1)
persistence results in an increase of the varidd@d) with DN)=7%~—>— (34)

respect to its valu®/4 at u=0. In other words, the persis-

tence is conductive to the intensification of the diffusion.  Thus, the varianc®(N) is equal toN?/2 in the leading

Inequalityn>1 givesD(N)<N?. Therefore, despite the in- approximation in the parameter This fact has a simple

crease oD(N), the fluctuations ofK—N/2) of the order of  explanation. The probability of occurrence of theword

N are exponentially small. containingN unities is approximatively equal to 1/2. So, the

relationsk?~N?/2 andk?=N?/4 give Eq.(34). The case of

strong persistence corresponds to the so-called ballistic re-
If the parameten is an integer of the order of unity, the gime of diffusion: if we chose randomly some symlaglin

distribution functionWy(k) is a polynomial of degree 2( the sequence, it will be surrounded by the same symbols with

—1). In particular, an=1, the functionWy(k) is constant, the probability close to unity.

2. Intermediate case, &1
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We (K= W (0 Ck1“(n+k)1“(n+L—k) 3
0.154 L =W (0 r(MIT(n+L) (37)
where
0.10-
= 4" T(1/2+n)T'(n+L)
x -
N W(0)= 2J7  T(2n+L) 38)
0.05- !
' It is of interest to note that the parameter of persistemce
] 05 and the memory lengtN are presented in Eq637) and(38)
via the parameten only. This means that the statistical prop-
°'°°0 5 10 15 20 erties of theL words withL<N are defined by this single

“combined” parameter.
In the limiting case of weak persistenaes>1, atk, L
FIG. 2. The distribution functioiVy(k) for N=20 and different —k>1, Eq. (37) along with the Stirling formula give the
values of the parametershown near the curves. Gaussian distribution function,

k

The evolution of the distribution functiow/(k) from the 1 (k—L/2)?
Gaussian form to the inverse one with a decrease of the Wi (k)= exp — (39)
: 2 I / V27D(L) 2D(L)
parameten is shown in Fig. 2. In the interval ItN<n<1
the curveWy(k) is concave and the maximum of function with the varianceD(L),
Wy (K) inverts into minimum. AtN>1 and In IN<n<1, the
curve remains a smooth function of its argumkrts shown
by curve withn=0.5 in Fig. 2. Below, we will not consider
this relatively narrow region of the change in the parameter
n. In the case of strong persisten@), the asymptotic ex-
Formulas(25), (26), (31), (33) and(34) describe the sta- pression for the distribution function E€B7) can be written
tistical properties oL words for the fixed “diffusion time” as
L=N. It is necessary to examine the distribution function
W, (k) for the general situatiori, # N. We start the analysis
with L<N.

1+

L L 2l
D(L)= {1 il

417 N(1-2p)

A LN

2n

nL
k(iL—k)’
B. Statistics of L words with L<N

1
WL(O)=W|_(L)=§(1—nInL). (42
1. Distribution function W,_ (k)

The distribution functionV, (k) atL<N can be given as Both the distributionW, (k) (41) and the functionWy(k)
(31) has a concave form. The former assumes the maximal

kincL i value (42) at the edges of the intervg0,L] and has a mini-
Wi(k= 2 BTG (35 mum atk=L/2.

. . . . 2. Variance D(L
This equation follows from the consideration bf words OL)

consisting of two parts, Using the definition Eq(8) and the distribution function
Eq. (37) one can obtain a very simple formula for the vari-
(al,...,aN,L‘, aN,L+1,...,aN). (36) anceD(L),
i—k unities k unities L
The total number of unities in this word isThe right-hand D(L)=z[1+m(L-1)], (43)

part of the word [ subword containsk unities. The remain-
ing (i —k) unities are situated within the left-hand part of the with
word [within (N—L) subword. The multiplier CKC\ ¥ in
Eq. (35) takes into account all possible permutations of the 1 2
symbols “1” within the N word on condition that thé sub- M=1v2n" N—2u(N—-1)"
word always contain& unities. Then we perform the sum-
mation over all possible values of the numheXote that Eq.  Equation(43) shows that the variand2(L) obeys the para-
(35) is a direct consequence of the proposition 1 formulatedolic law independently of the correlation strength in the
in Sec. Il C. Markov chain.

The straightforward summation in E5) yields the fol- In the case of weak persistence,ret 1, we obtain the
lowing formula that is valid at any value of the parameter asymptotics Eq(40). It allows one to analyze the behavior

(44)
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of the varianceD(L) with an increase in the “diffusion 1 wl 2
time” L. At smallmL<1, the dependendg(L) follows the pO (k)= >+ m(l— T
classical law of the Brownian diffusio@(L)~L/4. Then, at H
mL~1, the functionD(L) becomes superlinear. Let us consider a very important point relating to E4p).
For the case of strong persistences1, Eq.(43) gives |t the concentration of unities in the right-hand part of the
the asymptotics, word (36) is higher than 1/2k/L>1/2, then the most prob-
L2 nL(L-1) able concentrationi g—Kk)/(N—L) of unities in the left-hand
D(L)=—— ————. (45) part of this word is likewise increasedjqyk)/(N—L)
4 2 >1/2. At the same time, the concentratia-{k)/(N—L)
is less thark/L,

(50

The ballistic regime of diffusion leads to the quadratic law of
the D(L) dependence in the zero approximation in the pa- 1
rametern<1. =<
The unusual behavior of the variandgL ) raises an issue 2
as to what particular type of the diffusion equation corre-
sponds to the nonlinear dependeimx@.) in Eq. (40). In the
following subsection, when solving this problem, we wil
obtain the conditional probabilitp® of the symbol zero
o(coc;urring after a giveh word with L<<N. The ability to find
p
symbols being available, is very important for the study of
the self-similarity of the Markov chaifsee Sec. IlIB4

io—k
N—L

k
<C- (51)

This implies that the increased concentration of unities in the
| L words is necessarily accompanied by the existence of a
certain tail with an increased concentration of unities as well.
Such a phenomenon is referred to by us asntiaeropersis-
, with some reduced information about the precedingten.Ce An analysis perfor_med in the fol!owir)g- SeC“O’? will
indicate that the correlation length of this tail is yN with
v=1 dependent on the paramejeronly. It is evident from
the above-mentioned property of the isotropy of the Markov

3. Generalized diffusion equation at €N, n>1 chain that there are two correlation tails from both sides of

the L word.
Itis quite obvious that the distributiow, (k) satisfies the Note that the distributioW, (k) is a smooth function of
equation argumentsk and L near its maximum in the case of weak

persistence anl,L —k>1. By going over to the continuous
limit in Eq. (46) and using Eq(50) with the relationp®(k
—-1)=1-p®(k—1), we obtain the diffusion Fokker-
Planck equation for the correlated Markov process,

Wi 1(K) =W, (K)p@ (k) + W (k—1)pP(k—1). (46)

Here p(®(k) is the probability of “0” occurring after an

average-statistical word containingk unities andp®)(k

—1) is the probability of “1” occurring after arL word 5

containing k—1) unities. AtL<N, the probabilityp(®(k) IW_15W 7
Jk

___W_W(L)

W), 52
can be written as g8 (kW) (52

k+N-L

PO0=Fg 2, PeOCIC L. @47

wherek=k—L/2 and

2u
(1-2u)N+2uL”

n(L)= (53

The producb(i)C'ﬁC‘,\,i"L in this formula represents the con-
ditional probability of theN word occurring containing uni-
ties, the right-hand part of which, thesubword, containk  Equation(52) has a solution of the Gaussian form Eg9)
unities[compare with Eqs(35) and(36)]. with the varianceD (L) satisfying the ordinary differential
The producb(i)CL ¥ in Eq. (47) is a sharp function of ~ equation,
with a maximum at some point=i, whereasp; obeys the
linear law(5). This implies thaf; can be factored out of the d_D_ E+2 L)D (54)
summation sign being taken at pointiy. The asymptotical dL 4 7 '
calculation shows that poing is described by the equation,
Its solution, given the boundary conditidn(0)=0, coin-
iozﬂ— L/2 (1_ _) 48 cides with Eq.(40).
2 1-2u(1-L/IN) L
4. Self-similarity of the persistent Brownian diffusion

Expressior(5) taken at point, gives the desired formula for |, this subsection, we point to one of the most interesting

0
p© because properties of the Markov chain being considered, namely, its
KEN-L self-similarity. Let us reduce thid-step Markov sequence by
E b(i)ckci (49) regularly (or randomly removing some symbols and intro-
= LEN-L duce the decimation parametey
is obviously equal taV, (k). Thus, we have A=N*/N<1. (55

061107-6
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Here N* is a renormalized memory length for the reduced 1005
N*-step Markov chain. According to Ed50), the condi- ]
tional probability p; of occurring the symbol zero aftes
unities among the precediidj* symbols is described by the
formula

P P 56 Q
pk _2 M N* ’ ( )
with
* A (57
1-2u(1-N\) 1 10 100
The comparison between Eg®) and (56) shows that the L

.re.d.uced chain. possesses th_e same statistical prpperties as thg g 3. The dependence of the variariz®n the tuple length.
initial one but it is characterized by the renormalized paramso, the generated sequence with=100 andu = 0.4 (dotted ling
eters N*, u*) instead of N, ). Thus, Eqs(55) and(57)  and for the decimated sequendéise parameter of decimation
determine the one-parametrical renormalization of the pa=0.5). Squares and circles correspond to the stochastic and deter-
rameters of the stochastic process defined by(&q. ministic reduction, respectively. The solid line describes the noncor-
The astonishing property of the reduced sequence consisislated Brownian diffusionD (L) =L/4.
in that the variance O (L) is invariant with respect to the
one-parametric decimation transformati@¢s5) and(57). In  physical approaches for its simplification. Thus, we start this
other words, it coincides with the functid(L) for the ini-  subsection by analyzing the correlation properties of the long
tial Markov chain: words (L>N) in the Markov chains witiN>1. The two
first subsubsections of this subsection mainly deal with the
D*(L)= %[1+m*(L—1)]= D(L), L<N*. (58 ©ase of relatively weak correlations> 1.
1. Correlation length at weak persistence
Indeed, according to Eqg55) and (57), the renormalized
parameterm* =2u*/[N* —2u* (N* —1)] of the reduced
sequence coincides exactly with the parameter2u/[N 1 5 [
—2p(N—1)] of the initial Markov chain. Since the shape of (aji1)==+ul = 2 (a)—1]. (59)
the functionW (k) Eg. (37) is defined by the invariant pa- 2 N k=i=N-+1
rametem=n*, the distributionW, (k) is also invariant with
respect to the decimation transformation. The angle brackets denote the averaging of the density of
The transformationN, u) — (N*,u*) Egs.(55) and(57),  unities in some region of the Markov chain for its definite
possesses the properties of semigroup, i.e., the compositidaalization. The averaging is performed over distances much
of transformations N,u)—(N*,u*) and (*,u*)  greater than unity but far less than the memory lergtnd
—(N** | 1**) with transformation parameteks, and\, is  correlation lengthl. [see Eq.(63) below]. Note that this
likewise the transformation from the same semigroupaveraging differs from the statistical averaging over the en-
(N, ) — (N** , u**), with parametei =\ |\ . semble of realizations of the Markov chain denoted by the
The invariance of the functioB (L) atL<N was referred bar in Egs.(8) and (9). Equation(59) is a relationship be-
to by us as the phenomenon sélf-similarity. It is demon-  tween the average densities of unities in two different mac-
strated in Fig. 3 and is accordingly discussed below, in Sedoscopic regions of the Markov chain, namely, in the vicinity
IV A. of (i+1)th element and in the region <N, i). Such an
It is interesting to note that the property of self-similarity approach is similar to the mean field approximation in the
is valid for any strength of the persistency. Indeed, the resultheory of the phase transitions and is asymptotically exact at
Eq. (50) can be obtained directly from Eqél5)—(17), and  N—. In the continuous limit, Eq(59) can be rewritten in
Eq. (47) not only forn>1 but also for the arbitrary value of the integral form,
n.

Let us rewrite Eq(5) in the form

1 (27
(ali)=5+n Nﬁ_N<a(k)>dk—1). (60

C. Long-range diffusion, L>N
Unfortunately, the very useful proposition 1 is valid for
the words of the length <N only and is not applicable to
the analysis of the long words wilbh™>N. Therefore, inves- 1 1
tigating the statistical properties of the long words represents A = s
a rather challenging combinatorial problem and requires new adi) 2 a(0) 2 exp—i/yN), (61)

It has the obvious solution,
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where the parametey is determined by the relation,
.. 0..0..0..0..0.-0._0..0'
‘O,

1 1 ® o u=50/101
Y| ex ; -1 Zm. (62) "

)

A unique solutiony of the last equation is an increasing

function of u e (0,1/2). X 0.10- Ne20 )
Formula (61) shows that any fluctuatiofthe difference
between(a(i)) and the equilibrium value of;=1/2] is ex- 0.054 A
ponentially damped at distances of the order of cbeela- | "
tion length |, g
0.00 i U 2
l.=7yN. (63) 1 100 1000

Law (61) describes the phenomenon of thersistent macro-

scopic correlationsdiscussed in the previous subsection.

;Zfofgiﬁgog elggg ('gz?ogﬁérzgg)b)tlhbeo?oﬁz::g;tﬁ?ggtﬁ ' dots correspond to the generated sequence with0.1 and u
" . b Jc =50/101. The solid line is analytical resit0) with I.= yN and

grows asy= 1/44 with an increase i (at u— 1/2) until the y=0.38.

inequality 5> 1/N is satisfied. Here

FIG. 4. The dependence of the correlation functioron the
distancer between the symbols for the sequence Witk 20. The

6=1/2— u. (64) K(r)= 1 dDr) : (68)

Let us note that the inequali§>1/N defining the regime of
weak persistence can be rewritten in termsypfy<N/4. At Equations(67) and (43) give the correlation function at
8~1IN, the correlation lengtH. achieves its maximum r<N, n>1,
valueN?/4. With the following increase of, the diffusion

goes to the regime of strongly correlated diffusion that will K(r)=Cm,
be discussed in Sec. 3111 C. with
At ©—0, the macropersistence is broken and the corre-
lation length tends to zero. C,=1/2, C,=1/8, Cy_,_n=1/4,
2. Correlation function at weak persistence andm determined by Eq(44). In the continuous approxima-

Using the studied correlation properties of the Markovtlon’ the correlation function is described by the formula

sequence and some heuristic reasons, one can obtain the cor-

relation function/C(r) being defined as K(r) r<N. (69

7
K(r)=aia,—a%, (65  The independence of the correlation functionrodt r <N
results from our choice of the conditional probability in the
and then the variancB(L). Comparing Eq(65) with Egs.  simplest form(5). At r>N, the functionk(r) should de-
(7) and(8) and taking into account the property of sequencecrease because of the loss of memory. Therefore, using Egs.
a;=1/2, it is easy to derive the general relationship between61) and (63), let us prolongate the correlatdf(r) as the

functions/C(r) andD(L), exponentially decreasing function at-N,
L-1L-i 1, r<N,
D(L)=5+42> > K(r). (66) _m _
2 i=1r=1 K:(I’) 4 eXF<_rI N), r>N. (70)
[

Considering Eq(66) as an equation with respect #(r),
one can find its solution, The solid line in Fig. 4 presents the plot of the correlation

function atu=0.1. The value of the correlation function for
1 1 1 1 this curve is increased by multiplier 50.
K(1)=5D(2)= 7. K(2)=5D(3)-D(2)+ 3, According to Eqs(68) and(70), the varianceD(L) can
be written as

1
K(r)=5[D(r+1)-2D(N)+D(r-1)], r=3. (67) D(L)= 5 (L+mF(L)), 7D

This solution has a very simple form in the continuous limit, with

061107-8



SYMBOLIC STOCHASTIC DYNAMICAL SYSTEMS. .. PHYSICAL REVIEW E 68, 061107 (2003

3. Statistics of theL words for the case of strong persistence,
n<in~IN

In this subsection, we study the statistical properties of
long words (>N) in the sequences of symbols with strong
correlations. It is convenient to rewrite formu() for the
conditional probability of occurring the symbol zero after the
N word containingk unities in the form,

14
p,= 5+ 2y, (74)

where v is the number of zeros in the precedéwntword,
v=N-—Kk.
L In the case of strong persistenoesin™ N, the parameter

6=1/2— u is much smaller than V. Therefore, the prob-
FIG. 5. The numerical simulation of the dependeiiyg.) for ability p, can be written as
the generated sequence witls= 100 andw = 0.4 (circles. The dot-

ted line is the plot of function Eq.71) with the same values dfl S, =0,
and u. The solid line describes the noncorrelated Brownian diffu-
sion, D(L)=L/4. p,~y ¥IN,  v#0, v#N, (75
1-45, v=N.
L, L<N,

5 It is seen that the probability of occurring the symbol zero
N after theN word which contains only unitiesv=0) repre-
2L+ yN=(1+2y) 1 sents very small valug and it increases significantly if
L—N #0. This situation differs drastically from the case of weak
1—ex;{— ” L>N.

F(L)=
2
-2y — persistency. An>1, the paramete$ exceeds noticeably the
L value 1N, and the probabilityp, does not actually change
(72) with an increase in the number of zeros in the preceding
word.

As an illustration of the result E¢(71), we present the The analysis of the symbol generation process in the Mar-
plot of D(L) for N=100 andu=0.4 by the dotted line in  kov chain in the case of strong persistence gives the follow-
Fig. 5. The straight line in the figure corresponds to the deing picture of the fluctuations. There exist the entire portions
pendencé (L) =L/4 for the usual Brownian diffusion with- of the chain consisting of the same symbols, say unities. The
out correlationgfor 1 =0). It is clearly seen that the plot of characteristic length of such portions is$%/N. These por-
variance(71) contains two qualitatively different portions. tions are separated by one or more symbols zero. The num-
One of them, aL=<N, is the superlinear curve that moves ber of such packets of the same symbols in one fluctuation
away from the lineD =L/4 with an increase of as a result zone is aboul. Thus, the characteristic correlation distance
of the persistence. Fdr>N, the curveD(L) achieves the at which theN word containing the same symbols converts

le

linear asymptotics, into the N word with »=N/2 is aboutN/ 8,
O e B s -~ 79
( ):Z -2, (73 8

The described structure of the fluctuations defines the sta-

This phenomenon can be interpreted as a result of the diffuistical properties of thé. words withL>N in the case of
sion in which everyndependenstep~ D(L) of wandering  strong persistence. The distribution function differs signifi-
represents a path traversed by a particle during the characantly from the Gaussian and is characterized by a concave
teristic “fluctuating time” L~ (N+1;). Since these steps of form at L<I.~N/é. As L increases, the correlations be-
wandering are quasi-independent, the distribution functionween different parts of thé words get weaker and thie
W, (k) is the Gaussian. Thus, in the case of relatively weakyord can be considered as consisting of a number of inde-
persistencen>1, W, (k) is the Gaussian not only at<<N pendent subwords. So, according to the general mathematical
[see Eq(39)] but also forL>N, I.. theoremg 12,17, the distribution function takes on the usual

Note that the above-mentioned property of the self-Gaussian form. Such an evolution of the distribution function
similarity is valid only at the portionL,<N of the curve is depicted in Fig. 6. Note that the Gaussian form of the
D(L). Since the decimation procedure leads to the decreasdistribution function is the direct consequence of the finite-
of the parametej. [see Eq.(57)], the plot of asymptotics ness of the correlation length. Thus the Markov chains stud-
(73) for the reduced sequence bBt>N* goes below the ied in this paper differ essentially from strongly correlated
D(L) plot for the initial chain. systems withl .—, which are widely discussed in litera-
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6 bols, zeros and unities, identically distributed with equal
probabilities 1/2. Each consequent symbol was then added to
the chain with the conditional probability determined by the
previousN symbols in accordance with E@5). Then we

4. numerically calculated the variand(L) by means of Eq.
(8). The circles in Fig. 5 represent the calculated variance

g D(L) for the case of weak persistenae=12.5>1). A very

Y good agreement between the analytical re¢tl) and the
2 numerical simulation can be observed. The case of strong

persistence is illustrated by Figs. 6 and 7 where the distribu-
1 tion function W, (k) and the variancd® (L) are calculated
N é . numerically for n=4/37 and n=0.1, respectively. The
0 — T T — circles on the curves in Fig. 4 represent the calculated results
0.0 02 04 06 08 1.0 for the correlation functioriC(r) for n=0.1 (on the dotted
KL line) andn=40 (near the solid ling
FIG. 6. The distribution functio(k/L)=LW, (k) for N=g __| e numerical simulation was also used for the demon-
- ) ; stration of the proposition 1Fig. 1) and the self-similarity
and 5= 1/150. Different values of the length of words is shown . :
property of the Markov sequend€&ig. 3. The squares in
near the curves. . . .
Fig. 3 represent the varian&(L) for the sequence obtained
ture. As is knowr{11], such systems are characterized by theby the stochastic decimation of the initial Markov chéiot-
distribution functions with the power-law tai(the so-called ted line where each symbol was omitted with the probability

Levy distributions. 1/2. The circles in this figure correspond to the regular re-
The varianceD(L) follows the quadratic lawD=L?/4  duction of the sequence by removing each second symbol.
[see Eq.(45)] up to the range ot <I.~N/é and then ap- And finally, the numerical simulations have allowed us to
proaches to the asymptoti€¥(L) =BL with B~N/46 (see  make sure that we are able to determine the paramdters
Fig. 7). andu of a given binary sequence. We generated the Markov

The dotted line in Fig. 4.presents the correl_ation fU”CtiO”sequences with different parametedsand x and defined
for the case of strong persistenge< 50/101,N=20). numerically the corresponding curvBgL). Then we solved
IV. RESULTS OF NUMERICAL SIMULATIONS the inverse prob_lem of the reconstruction of the paraméters
and u by analyzing the curveB(L). The reconstructed pa-
AND APPLICATIONS . . .
rameters were always in good agreement with their pre-
In this section, we support the obtained analytical resultscribed values. In the following subsections we apply this
by numerical simulations of the Markov chain with the con- ability to the treatment of the statistical properties of literary
ditional probability Eq.(5). Besides, the properties of the and DNA texts.
studied binaryN-step Markov chain are compared with those
for the natural objects, specifically for the coarse-grained B. Literary texts

written and DNA texts. . - .
It is well known that the statistical properties of the

A. Numerical simulations of the Markov chain coarse-grained texts written in any language exhibit a re-

] . markable deviation from random sequenf448|. In order

The first stage of the construction of thestep Markov (5 check the applicability of the theory of the binaxystep
chain was a generation of the initial noncorrelatédsym-  \jarkov chains to literary texts, we resorted to the procedure

— of coarse graining by the random mapping of all characters

101 /,w“”f of the text onto the binary set of symbols, zeros and unities.

10°4 e The statistical properties of the coarse-grained texts depend,
~.,.m”' but not significantly, on the kind of mapping. This is illus-

5
10 trated by the curves in Fig. 8 where the variamz@.) for

10*4 five different kinds of the mapping of Bible is presented. In
Q  10°4 general, the random mapping leads to nonequal numbers of
1071 unities and zerok; andk, in the coarse-grained sequence.
. A particular analysis indicates that the variari2€l) (40)
10°s gets the additional multiplier,
10°4 .~
10" 4 - - — - . 4kok,
10 10 10 , 10 10 10 —(k0+ k)2’

FIG. 7. The dependence of the variarizen the word lengti.  in this biased case. In order to derive the functipfi.) for
for the sequence witN= 20 andu = 50/101(dotted ling. The solid ~ the nonbiased sequence, we divided the numerically calcu-

line describes the noncorrelated Brownian diffusibrfL)=L/4. lated value of the variance by this multiplier.
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10
10°+
10°
10"
10°
1074
10"
10°

10" T . T

FIG. 8. The dependencB(L) for the coarse-grained text of
Bible obtained by means of five different kinds of random mapping.
The straight solid line describes the noncorrelated Brownian diffu-

sion,D(L)=L/4.
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FIG. 10. The dependence of the variarizen the tuple length
L for the coarse-grained text of Bibldotted ling and for the deci-
mated sequences with different parameters\ = 3/4 (squareg \
=1/2 (starg, and\ = 1/256 (triangles. The solid line describes the
noncorrelated Brownian diffusiorD(L)=L/4. The inset demon-
strates the antipersistent portion of théL) plot for Bible.

The study of different written texts has suggested that all

of them feature the pronounced persistent correlations. It i
demonstrated by Fig. 9 where the five variance curves g
significantly higher than the straight lii@=L/4. However,
it should be emphasized that regardless of the kind of mapﬁ
ping the initial portions]. <80, of the curves correspond to
a slight antipersistent behavi¢see inset to Fig. 0 More-
over, for some inappropriate kinds of mappitegg., when all
vowels are mapped onto the same symitoé antipersistent
portions can reach the values bf~1000. To avoid this
problem, all the curves in Fig. 9 are obtained for the definite
representative mappinga¢m)—0; (n-z)—1.

Thus the persistence is the common property of the binar
N-step Markov chains that have been considered in this Pg

107y
g e - Collection of Works on CS
10°q - -- - Bible in Russian
i IRERREES Bible in English
10 1-- History of Russians
104_i ----- Alice's Adventures
1 —— L/4 - Brownian Diffusion
10°
Q E
107+
10'4
10°
10-1 ] ML LLL BNl R L | bl T
10" 10° 10° 10* 10°
L

FIG. 9. The dependendg(L) for the coarse-grained texts of
collection of works on the computer scienaa£2.2x 10~ 3, short-
dotted ling, Bible in Russian h=1.9x 103, dashed ling Bible
in English (m=1.5x10"3, dotted ling, “History of Russians in the
20th Century” by Oleg Platonovni=6.4x 10~ 4, dash-dotted ling
and “Alice’s Adventures in Wonderland” by Lewis Carrollr
=2.7x10"%, dash-dot-dotted line The solid line describes the

noncorrelated Brownian diffusiom(L)=L/4.

er and the coarse-grained written texts at large scales.
oreover, the written texts as well as the Markov sequences
ossess the property of the self-similarity. Indeed, the curves
in Fig. 10 obtained from the text of Bible with different
levels of the deterministic decimation demonstrate the self-
similarity. Presumably, this property is the mathematical re-
flection of the well-known hierarchy in the linguistics:
letters—syllables—words—sentences-paragraphs—chap
ters—books

All the above-mentioned circumstances allow us to sup-
ose that our theory of the binaNrstep Markov chains can
e applied to the description of the statistical properties of
he texts of natural languages. However, in contrast to the
generated Markov sequen@ee Fig. where the full length
M of the chain is far greater than the memory lenttthe
coarse-grained texts described by Fig. 9 are of relatively
short lengthM=N. In other words, the coarse-grained texts
are similar not to the Markov chains but rather to some non-
stationary short fragments. This implies that each of the writ-
ten texts is correlated throughout the whole of its length.
Therefore, as far as the written texts are concerned, it is
impossible to observe the second portion of the cubyk)
parallel(in the log-log scalgto the lineD(L)=L/4, similar
to that shown in Fig. 5. As a result, one cannot define the
values of both parameteid and u for the coarse-grained
texts. The analysis of the curves in Fig. 6 can give the com-
bination m=2u/N(1—-2u) only [see Eq.(40)]. Perhaps,
this particular combination is the real parameter governing
the persistent properties of the literary texts.

We would like to note that the origin of the long-range
correlations in the literary texts is hardly related to the gram-
matical rules as is claimed in Ref4]. At short scaled.
<80 where the grammatical rules are in fact applicable the
character of correlations is antipersistésge the inset in Fig.

10) whereas semantic correlations lead to the global persis-
tent behavior of the varianda(L) throughout the entire of
literary text.

061107-11



USATENKO et al. PHYSICAL REVIEW E 68, 061107 (2003

10° - 10°y
D(L)=L(1+0.04L)/4 / 3
1] (L)=L(1+ )/// 1 —{AG-0;{C.T}-1
e 10°] ----AT)-0,{C,G}-1
A 3
10 ey i - {A,C}-0;{G, T}-1
e 1 —— L/4 - Brownian Diffusion
10° D(L)=L(1+72)/4 .~ 10°4
Q 2 Q 3
10”3 103_;
10' 4 1
9 3
10°4 10 1
10-1 T ) T ) 1 10-1 § T T Ll i U Ll
10° 10' 10° 10° 10* 10° 10 0° 10° 10*° 10°  10°
L L

FIG. 11. The dependend(L) for the coarse-grained alphabeti- FIG. 12. The dependend&(L) for the coarse-grained DNA text
cal list of 15462 English wordgcircles. The curved solid line is  of Bacillus subtilis, complete genorxfer three nonequivalent kinds
the plot of function Eq(55) with the fitting parametersl=180 and  of mapping. Dotted, dashed, and dash-dotted lines correspond to the
w=0.44. The straight solid line describes the noncorrelated Brownmappings{A,G} —0, {C,T}—1 (the parametem=4.1x10 2),
ian diffusion,D(L)=L/4. {AT}—0, {C,G—1 (m=2.5x10"?), and{A,C}—0, {G,T}—1
(m=1.5x10"2), respectively. The solid line describes the noncor-

. . . . lated B i iffusi =L/4.
The numerical estimations of the persistent parameter related Brownian diffusiond(L) =L/4

and the characterization of the languages and different au-

thors using this parameter can be regarded as a new intrigu- D. DNA texts

ing problem of linguistics. For instance, the unprecedented |t is known that any DNA text is written by four “char-

low value ofm for the very inventive work by Lewis Carroll acters,” specifically by adeninéA), cytosine(C), guanine

as well as the closeness of for the texts of English and (G), and thymine(T). Therefore, there are three nonequiva-

Russian versions of Bible are of certain interest. lent types of the DNA text mapping onto one-dimensional
It should be noted that there exist special kinds of shorthinary sequences of zeros and unities. The first of them is the

range correlated texts which can be specified by both of theo-called purine-pyrimidine ruléA,G}—0, {C,T}—1. The

parametersN and .. For example, all dictionaries consist of second one is the hydrogen-bond ru{é,T}—0, {C,G}

the families of words where some preferable letters are re—1. And, finally, the third is{A,C} -0, {G,T}—1.

peated more frequently than in their other parts. Yet another By way of example, the variancB(L) for the coarse-

example of the shortly correlated texts is any lexicographigrained text ofBacillus subtilis, complete genom@p://

this kind is given below. 000964.gbk is displayed in Fig. 12 for all possible types of

mapping. One can see that the persistent properties of DNA
are more pronounced than for the written texts and, contrary
C. Dictionaries to the written texts, th® (L) dependence for DNA does not
] ) o exhibit the antipersistent behavior at small valuek.dh our
As an example, we have investigated the statistical propyie\, the noticeable deviation of different curves in Fig. 12
erties of the coarse-grained alphabetidakicographically  from each other demonstrates that the DNA texts are much
ordered list of the most frequently used 15462 English more complex objects in comparison with the written ones.
words. In contrast to other texts, the statistical properties ofndeed, the different kinds of mapping reveal and emphasize
the coarse-grained dictionaries are very sensitive to the kingarious types of physical attractive correlations between the
of mapping. If one uses the above-mentioned mappingnucleotides in DNA, such as the strong purine-purine and
(a—m)—0; (n—-z)—1, the behavior of the variande(L) pyrimidine-pyrimidine persistent correlationgthe upper
similar to that shown in Fig. 9 would be obtained. The par-curve,, and the correlations caused by a weaker attraction
ticular construction of the dictionary manifests itself if the A—T and G—G (the middle curvie
preferable letters in the neighboring families of words are It is interesting to compare the correlation properties of
mapped onto the different symbols. The variafd) for  the DNA texts for three different species that belong to the
the dictionary coarse-grained by means of such mapping isajor domains of living organisms: the Bacteria, the Ar-
shown by circles in Fig. 11. It is clearly seen that the graphchaea, and the Eukarya9]. Figure 13 shows the variance
of the functionD (L) consists of two portions similar to the D(L) for the coarse-grained DNA texts @&acillus subtilis
curve in Fig. 5 obtained for the generatbdstep Markov  (the Bacterig Methanosarcina acetivoranstlithe Archaeg
sequence. The fitting of the curve in Fig. 11 by functi@dd) = and Drosophila melanogasterfruit fly—(the Eukarya for
(the curved solid line in Fig. Jlyielded the values of the the most representative mappify,G}—0, {C,T}—1. Itis
parameterdN=180 andu=0.44. seen that th® (L) curve for the DNA text ofBacillus sub-
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10° DNA texts of the Eukarya are more similar to the collections
k[ - Bacilus subtilis of 10*~1C short stories.
10 Methanosarcina acetivorans Pid

o= Drosophila melanogaster - V. CONCLUSION
—— L/4 - Brownian Diffusion =

Thus, we have developed an approach to describing the
strongly correlated one-dimensional systems. The simple, ex-
actly solvable model of the uniform binamy-step Markov
chain is presented. The memory lengttand the parameter
p of the persistent correlations are two parameters in our
theory. The correlation functioki(r) is usually employed as
the input characteristics for the description of the correlated
random systems. Yet, the functidé(r) describes not only
the direct interconnection of the elememisanda;,,, but
L also takes into account their indirect interaction via other
elements. Since our approach operates with the “original”
parametersN and ., we believe that it allows us to reveal
the intrinsic properties of the system which provide the cor-
relations between the elements.

FIG. 13. The dependendd(L) for the coarse-grained DNA
texts of Bacillus subtilis, complete genomthe Bacteria(dotted
line); Methanosarcina acetivorans, complete genpthe Archaea

(dashed ling Drosophila melanogaster chromosome X, complete . -
sequencethe Eukarya(dash-dotted linefor the mapping{A,G} we have demonstrated_ the appl_lcablllty of the developed
.0, {C,T}—1. The solid line describes the noncorrelated Brown- theoretical model to the different kinds of relatively weakly

ian diffusion, D (L) = L/4. correlated stochastic systems. Perhaps, the case of strong
persistency is also of interest from the standpoint of possible
S . . . applications. Indeed, the domain structure of the symbol
tilis is characterized by the highest persistence. As well as foj | .t ,ations an<1 is very similar to the domains in mag-
the written téax';]s, theDh(L) c(;;rves for the. D’?I]A I(')f both th? netics. Thus, an attempt to model the magnetic structures by
Bacteria and the Archaea do not contain the linear portiong, e \jarkov chains with strongly pronounced persistent prop-
given by Eq.(73). This suggests that their DNA chains are erties can be appropriate.
not stationary sequences. In this connection, we would like "y \ouid like to note that there exist some features of the
to point out that their DNA molecules are circular and rep-o| correlated systems which cannot be interpreted in terms
resent the collection of extended coding regions mterruptegf our two-parametric model. For example, the interference

by small nqncodin_g regions. Apcording to Figs. .12 and 134f the grammatical antipersistent and semantic persistent cor-
the noncoding regions do not disrupt the correlation betwee lations in the literary texts requires more than two param-

the coding areas, and the DNA systems of the Bac_;teria aNGers for their description. Obviously, more complex models
the Archaea are fully correlated throughout their entiregy,q 4 he worked out for the adequate interpretation of the

lengths. Contrary to them, the DNA molecules of the EU-gavistical properties of the DNA texts and other real corre-

karya have the linear structure and contain long noncodingyey systems. In particular, the Markov chains consisting of
portions. As evident from Fig. 13, the DNA sequence of theyore than two different elementaon-binary chainscan be
representative of the Eukarya is not entirely correlated. The itaple for modeling the DNA systems.

D(L) curve for theX chromosome of the fruit fly corre-
sponds qualitatively to Eq$71) and(72) with u~0.35 and
N~250. If one draws an analogy between the DNA se-
guences and the literary texts, the resemblance of the corre- We acknowledge Yu. L. Rybalko and A. L. Patsenker for
lation properties of integral literary novels and the DNA textsassistance in the numerical simulations, and M. E. Serbin
of the Bacteria and Archaea are to be found, whereas thand R. Zomorrody for helpful discussions.
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