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Symbolic stochastic dynamical systems viewed as binaryN-step Markov chains
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A theory of systems with long-range correlations based on the consideration ofbinary N-step Markov chains
is developed. In the model, the conditional probability that thei th symbol in the chain equals zero~or unity!
is a linear function of the number of unities among the precedingN symbols. The correlation and distribution
functions as well as the variance of the number of symbols in the words of arbitrary lengthL are obtained
analytically and numerically. A self-similarity of the studied stochastic process is revealed and the similarity
group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the
distribution function of theL words is explored. If the persistent correlations are not extremely strong, the
distribution function is shown to be the Gaussian with the variance being nonlinearly dependent onL. The
applicability of the developed theory to the coarse-grained written and DNA texts is discussed.
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I. INTRODUCTION

The problem of systems with long-range spatial and
temporal correlations~LRCS! is one of the topics of inten
sive research in modern physics, as well as in the theor
dynamical systems and the theory of probability. The LR
systems are usually characterized by a complex structure
contain a number of hierarchic objects as their subsyste
The LRC systems are the subject of study in physics, b
ogy, economics, linguistics, sociology, geography, psych
ogy, etc. @1–4#. At the present time, there is no genera
accepted theoretical model that adequately describes the
namical and statistical properties of the LRC systems.
tempts to describe the behavior of the LRCS in the fram
work of the Tsalis nonextensive thermodynamics@5,6# were
undertaken in Ref.@7#. However, the nonextensive therm
dynamics is not well-grounded and requires the construc
of the additional models which could clarify the properties
the LRC systems.

One of the efficient methods to investigate the correla
systems is based on a decomposition of the space of s
into a finite number of parts labeled by definite symbo
This procedure referred to as coarse graining is accompa
by the loss of short-range memory between states of sys
but does not affect and does not damage its robust inva
statistical properties on large scales. The most freque
used method of the decomposition is based on the introd
tion of two parts of the phase space. In other words, it c
sists in mapping the two parts of states onto two symb
say 0 and 1. Thus the problem is reduced to investigating
statistical properties of the symbolic binary sequences. T
method is applicable for the examination of both discrete
continuous systems.

One of the ways to get a correct insight into the nature
correlations consists in an ability of constructing a ma
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ematical object~for example, a correlated sequence of sy
bols! possessing the same statistical properties as the in
system. There are many algorithms to generate long-ra
correlated sequences: the inverse Fourier transform@8#, the
expansion-modification Li method@9#, the Voss procedure o
consequent random addition@10#, the correlated Levy walks
@11#, etc. @8#. We believe that, among the above-mention
methods, using the Markov chains is one of the most imp
tant. We would like to demonstrate this statement in
present paper.

In the following sections, the statistical properties of t
binary many-step Markov chainis examined. In spite of the
long-time history of studying Markov sequences~see, for
example@4,12,13# and references therein!, the concrete ex-
pressions for the variance of sums of random variables
such strings have not yet been obtained. Our model oper
with two parameters governing the conditional probability
the discrete Markov process, specifically with the memo
length N and the correlation parameterm. The correlation
and distribution functions as well as the varianceD being
nonlinearly dependent on the lengthL of a word are derived
analytically and calculated numerically. The nonlinearity
the D(L) function reflects the existence of strong corre
tions in the system. The evolved theory is applied to
coarse-grained written texts and dictionaries, and to D
strings as well.

Some preliminary results of this study were published
Ref. @14#.

II. FORMULATION OF THE PROBLEM

A. Markov processes

Let us consider a homogeneous binary sequence of s
bols, ai5$0,1%. To determine theN-step Markov chain
we have to introduce the conditional probabili
P(ai uai 2N ,ai 2N11 , . . . ,ai 21) of occurring the definite sym-
bol ai ~for example, ai50) after symbols
ai 2N ,ai 2N11 , . . . ,ai 21. Thus, it is necessary to define 2N
©2003 The American Physical Society07-1
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values of theP-function corresponding to each possible co
figuration of the symbolsai 2N ,ai 2N11 , . . . ,ai 21. We sup-
pose that theP function has the form

P~ai50uai 2N ,ai 2N11 , . . . ,ai 21!5
1

N (
k51

N

f ~ai 2k ,k!.

~1!

Here the valuef (ai 2k ,k)/N is the contribution of the sym
bol ai 2k to the conditional probability of occurring the sym
bol zero at thei th site. Relation~1! corresponds to the add
tive influence of the previous symbols on the generated o
The homogeneity of the Markov chain is provided by t
independence of the conditional probability Eq.~1! of the
index i.

It is reasonable to assume the functionf to be decreasing
with an increase of the distancek between the symbolsai 2k
and ai in the Markov chain. However, for the sake of sim
plicity we consider here a steplike memory functio
f (ai 2k ,k) independent of the second argumentk. As a result,
the model is characterized by three parameters only, spe
cally by f (0), f (1), andN:

P~ai50uai 2N ,ai 2N11 , . . . ,ai 21!5
1

N (
k51

N

f ~ai 2k!. ~2!

Note that the probabilityP in Eq. ~2! depends on the num
bers of symbols 0 and 1 in theN word but is independent o
the arrangement of the elementsai 2k . We also suppose tha

f ~0!1 f ~1!51. ~3!

This relation provides the statistical equality of the numb
of symbols zero and unity in the Markov chain under co
sideration. In other words, the chain is nonbiased. Inde
taking into account Eqs.~2! and ~3! and the sequence o
equations,

P~ai51uai 2N , . . . ,ai 21!512P~ai50uai 2N , . . . ,ai 21!

5
1

N (
k51

N

f ~ ãi 2k!

5P~ai50uãi 2N , . . . ,ãi 21!, ~4!

one can see the symmetry with respect to interchangeãi↔ai

in the Markov chain. Hereãi is the symbol opposite toai ,
ãi512ai . Therefore, the probabilities of occurring th
words (a1 , . . . ,aL) and (ã1 , . . . ,ãL) are equal to each othe
for any word lengthL. At L51 this yields equal averag
probabilities that symbols 0 and 1 occur in the chain.
06110
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~5!

with the correlation parameterm being defined by the rela
tion

m5 f ~0!2
1

2
. ~6!

We focus our attention on the region ofm determined by
the persistence inequality 0,m,1/2. In this case, each o
the symbols unity in the precedingN word promotes the
birth of new symbol unity. Nevertheless, the major part
our results is valid for the antipersistent region21/2,m
,0 as well.

A similar rule for the production of anN word
(a1 , . . . ,aN) that follows after a word (a0 ,a1 , . . . ,aN21)
was suggested in Ref.@4#. However, the conditional prob
ability pk of the symbolsaN occurring does not depend o
the previous ones in the model@4#.

B. Statistical characteristics of the chain

In order to investigate the statistical properties of the M
kov chain, we consider the distributionWL(k) of the words
of definite lengthL by the numberk of unities in them,

ki~L !5(
l 51

L

ai 1 l , ~7!

and the variance ofk,

D~L !5k22 k̄2, ~8!

where

f ~k!5 (
k50

L

f ~k!WL~k!. ~9!

If m50, one arrives at the known result for the noncor
lated Brownian diffusion,

D~L !5L/4. ~10!

We will show that the distribution functionWL(k) for the
sequence determined by Eq.~5! ~with nonzero but not ex-
tremely close to 1/2 parameterm) is the Gaussian with the
variance D(L) nonlinearly dependent onL. However, at
m→1/2 the distribution function can differ from the Gaus
ian.
7-2
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C. Main equation

For the stationary Markov chain, the probabili
b(a1a2 . . . aN) of occurring a certain word (a1 ,a2 , . . . ,aN)
satisfies the condition of compatibility for the Chapma
Kolmogorov equation~see, for example, Ref.@15#!:

b~a1 . . . aN!5 (
a50,1

b~aa1 . . . aN21!

3P~aNua,a1 , . . . ,aN21!. ~11!

Thus, we have 2N homogeneous algebraic equations for t
2N probabilitiesb of the N words occurring and the norma
ization equation(b51. In the case under consideration, t
set of equations can be substantially simplified owing to
following statement.

Proposition 1. The probability b(a1a2 . . . aN) depends on
the number k of unities in the N word only, i.e., it is inde-
pendent of the arrangement of symbols in the wo
(a1 ,a2 , . . . ,aN).

This statement illustrated by Fig. 1 is valid owing to th
chosen simple model~2!, ~5! of the Markov chain. It can be
easily verified directly by substituting the obtained belo
solution ~15! into the set~11!. Note that, according to the
Markov theorem, Eqs.~11! do not have other solutions@16#.

Proposition 1 leads to the very important property of is
ropy: any word (a1 ,a2 , . . . ,aL) appears with the same prob
ability as the inverted one, (aL ,aL21 , . . . ,a1).

~12!

FIG. 1. The probabilityb of a word occurring (a1 ,a2 , . . . ,aN)
vs its numberz expressed in the binary code,z5( i 51

N ai32i 21, for
N58, m50.4.
06110
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b~k!5
12pk21

pk
b~k21!5

N22m~N22k12!

N12m~N22k!
b~k21!.

~13!

The probabilitiesb(k) for m.0 satisfy the sequence of in
equalities,

b~0!5b~N!.b~1!5b~N21!.•••.b~N/2!, ~14!

which is the reflection of persistent properties for the cha
At m50 all probabilities are equal to each other.

The solution of Eq.~11! is

b~k!5A•G~n1k!G~n1N2k! ~15!

with the parametern defined by

n5
N~122m!

4m
. ~16!

The constantA will be found below by normalizing the dis
tribution function. Its value is

A5
4n

2Ap

G~1/21n!

G~n!G~2n1N!
. ~17!

III. DISTRIBUTION FUNCTION OF L WORDS

In this section we investigate the statistical properties
the Markov chain, specifically, the distribution of the wor
of definite lengthL by the numberk of unities. The lengthL
can also be interpreted as the number of jumps of some
ticle over an integer-valued 1D lattice or as the time of t
diffusion imposed by the Markov chain under consideratio
The form of the distribution functionWL(k) depends, to a
large extent, on the relation between the word lengthL and
the memory lengthN. Therefore, the first thing we will do is
to examine the simplest caseL5N.

A. Statistics of N words

The valueb(k) is the probability that anN word contains
k unities with adefiniteorder of symbolsai . Therefore, the
probability WN(k) that anN word containsk unities with
arbitrary order of symbolsai is b(k) multiplied by the num-
berCN

k 5N!/k!(N2k)! of different permutations ofk unities
in the N word,

WN~k!5CN
k b~k!. ~18!

Combining Eqs.~15! and~18!, we find the distribution func-
tion,

WN~k!5WN~0!CN
k G~n1k!G~n1N2k!

G~n!G~n1N!
. ~19!

The normalization constantWN(0) can be obtained from the
equality(k50

N WN(k)51,
7-3



ne
o
n

io

f
e

-
n
-

e

r-

n

t-

e

re-

ith

USATENKO et al. PHYSICAL REVIEW E 68, 061107 ~2003!
WN~0!5
4n

2Ap

G~n1N!G~1/21n!

G~2n1N!
. ~20!

Comparing Eqs.~15!, ~18!–~20!, one can get Eq.~17! for the
constantA in Eq. ~15!.

Note that the distributionWN(k) is an even function of
the variablek5k2N/2,

WN~N2k!5WN~k!. ~21!

This fact is a direct consequence of the above-mentio
statistical equivalence of zeros and unities in the Mark
chain being considered. Let us analyze the distribution fu
tion WN(k) for different relations between the parametersN
andm.

1. Limiting case of weak persistence, nš1

In terms of the correlation parameterm, this limiting case
corresponds to the values ofm not very close to 1/2,

122m

4m
@

1

N
. ~22!

This inequality can be rewritten via thef function @see Eqs.
~2!–~6!#,

f ~1!

f ~0!2 f ~1!
@

1

N
. ~23!

In the absence of correlations,n→`, Eq. ~19! and the
Stirling formula yield the Gaussian distribution atk,N,N
2k@1. Given the persistence is not too strong,

n@1, ~24!

one can also obtain the Gaussian form for the distribut
function,

WN~k!5
1

A2pD~N!
expH 2

~k2N/2!2

2D~N! J , ~25!

with the m-dependent variance,

D~N!5
N~N12n!

8n
5

N

4~122m!
. ~26!

Equation~25! says that theN words with equal numbers o
zeros and unities,k5N/2, are most probable. Note that th
persistence results in an increase of the varianceD(N) with
respect to its valueN/4 at m50. In other words, the persis
tence is conductive to the intensification of the diffusio
Inequalityn@1 givesD(N)!N2. Therefore, despite the in
crease ofD(N), the fluctuations of (k2N/2) of the order of
N are exponentially small.

2. Intermediate case, nœ1

If the parametern is an integer of the order of unity, th
distribution functionWN(k) is a polynomial of degree 2(n
21). In particular, atn51, the functionWN(k) is constant,
06110
d
v
c-

n

.

WN~k!5
1

N11
. ~27!

At nÞ1, WN(k) has a maximum in the middle of the inte
val @0,N#.

3. Limiting case of strong persistence

If the parametern satisfies the inequality,

n! ln21N, ~28!

or

122m!1/N ln~N!, f ~1!!1/N ln~N!, ~29!

then one can neglect the parametern in the arguments of the
functionsG(n1k), G(n1N), andG(n1N2k) in Eq. ~19!.
In this case, the distribution functionWN(k) assumes its
maximal values atk50 andk5N,

WN~1!5WN~0!
nN

N21
!WN~0!. ~30!

Formula ~30! describes the sharply decreasingWN(k) as k
varies from 0 to 1~and from N to N21). Then, at 1,k
,N/2, the functionWN(k) decreases more slowly with a
increase ink,

WN~k!5WN~0!
nN

k~N2k!
. ~31!

At k5N/2, the probability WN(k) achieves its minimal
value,

WNS N

2 D5WN~0!
4n

N
. ~32!

It follows from normalization ~20! that the values
WN(0)5WN(N) are approximatively equal to 1/2. Neglec
ing the terms of the order ofn2, one gets

WN~0!5
1

2
~12n ln N!. ~33!

In the straightforward calculation using Eqs.~8! and~31! the
varianceD is

D~N!5
N2

4
2

nN~N21!

2
. ~34!

Thus, the varianceD(N) is equal toN2/2 in the leading
approximation in the parametern. This fact has a simple
explanation. The probability of occurrence of theN word
containingN unities is approximatively equal to 1/2. So, th
relationsk2'N2/2 andk̄25N2/4 give Eq.~34!. The case of
strong persistence corresponds to the so-called ballistic
gime of diffusion: if we chose randomly some symbolai in
the sequence, it will be surrounded by the same symbols w
the probability close to unity.
7-4
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The evolution of the distribution functionWN(k) from the
Gaussian form to the inverse one with a decrease of
parametern is shown in Fig. 2. In the interval ln21N,n,1
the curveWN(k) is concave and the maximum of functio
WN(k) inverts into minimum. AtN@1 and ln21N,n,1, the
curve remains a smooth function of its argumentk as shown
by curve withn50.5 in Fig. 2. Below, we will not conside
this relatively narrow region of the change in the parame
n.

Formulas~25!, ~26!, ~31!, ~33! and ~34! describe the sta
tistical properties ofL words for the fixed ‘‘diffusion time’’
L5N. It is necessary to examine the distribution functi
WL(k) for the general situation,LÞN. We start the analysis
with L,N.

B. Statistics ofL words with LËN

1. Distribution function WL„k…

The distribution functionWL(k) at L,N can be given as

WL~k!5 (
i 5k

k1N2L

b~ i !CL
kCN2L

i 2k . ~35!

This equation follows from the consideration ofN words
consisting of two parts,

~36!

The total number of unities in this word isi. The right-hand
part of the word (L subword! containsk unities. The remain-
ing (i 2k) unities are situated within the left-hand part of t
word @within (N2L) subword#. The multiplier CL

kCN2L
i 2k in

Eq. ~35! takes into account all possible permutations of
symbols ‘‘1’’ within the N word on condition that theL sub-
word always containsk unities. Then we perform the sum
mation over all possible values of the numberi. Note that Eq.
~35! is a direct consequence of the proposition 1 formula
in Sec. II C.

The straightforward summation in Eq.~35! yields the fol-
lowing formula that is valid at any value of the parametern:

FIG. 2. The distribution functionWN(k) for N520 and different
values of the parametern shown near the curves.
06110
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WL~k!5WL~0!CL
k G~n1k!G~n1L2k!

G~n!G~n1L !
, ~37!

where

WL~0!5
4n

2Ap

G~1/21n!G~n1L !

G~2n1L !
. ~38!

It is of interest to note that the parameter of persistencm
and the memory lengthN are presented in Eqs.~37! and~38!
via the parametern only. This means that the statistical pro
erties of theL words with L,N are defined by this single
‘‘combined’’ parameter.

In the limiting case of weak persistence,n@1, at k, L
2k@1, Eq. ~37! along with the Stirling formula give the
Gaussian distribution function,

WL~k!5
1

A2pD~L !
expH 2

~k2L/2!2

2D~L ! J ~39!

with the varianceD(L),

D~L !5
L

4 S 11
L

2nD5
L

4 F11
2mL

N~122m!G . ~40!

In the case of strong persistence~28!, the asymptotic ex-
pression for the distribution function Eq.~37! can be written
as

WL~k!5WL~0!
nL

k~L2k!
, kÞ0, kÞL, ~41!

WL~0!5WL~L !5
1

2
~12n ln L !. ~42!

Both the distributionWL(k) ~41! and the functionWN(k)
~31! has a concave form. The former assumes the maxi
value~42! at the edges of the interval@0,L# and has a mini-
mum atk5L/2.

2. Variance D„L …

Using the definition Eq.~8! and the distribution function
Eq. ~37! one can obtain a very simple formula for the va
anceD(L),

D~L !5
L

4
@11m~L21!#, ~43!

with

m5
1

112n
5

2m

N22m~N21!
. ~44!

Equation~43! shows that the varianceD(L) obeys the para-
bolic law independently of the correlation strength in t
Markov chain.

In the case of weak persistence, atn@1, we obtain the
asymptotics Eq.~40!. It allows one to analyze the behavio
7-5
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of the varianceD(L) with an increase in the ‘‘diffusion
time’’ L. At small mL!1, the dependenceD(L) follows the
classical law of the Brownian diffusion,D(L)'L/4. Then, at
mL;1, the functionD(L) becomes superlinear.

For the case of strong persistence,n!1, Eq. ~43! gives
the asymptotics,

D~L !5
L2

4
2

nL~L21!

2
. ~45!

The ballistic regime of diffusion leads to the quadratic law
the D(L) dependence in the zero approximation in the
rametern!1.

The unusual behavior of the varianceD(L) raises an issue
as to what particular type of the diffusion equation cor
sponds to the nonlinear dependenceD(L) in Eq. ~40!. In the
following subsection, when solving this problem, we w
obtain the conditional probabilityp(0) of the symbol zero
occurring after a givenL word with L,N. The ability to find
p(0), with some reduced information about the preced
symbols being available, is very important for the study
the self-similarity of the Markov chain~see Sec. III B 4!.

3. Generalized diffusion equation at LËN, nš1

It is quite obvious that the distributionWL(k) satisfies the
equation

WL11~k!5WL~k!p(0)~k!1WL~k21!p(1)~k21!. ~46!

Here p(0)(k) is the probability of ‘‘0’’ occurring after an
average-statisticalL word containingk unities andp(1)(k
21) is the probability of ‘‘1’’ occurring after anL word
containing (k21) unities. AtL,N, the probabilityp(0)(k)
can be written as

p(0)~k!5
1

WL~k! (
i 5k

k1N2L

pib~ i !CL
kCN2L

i 2k . ~47!

The productb( i )CL
kCN2L

i 2k in this formula represents the con
ditional probability of theN word occurring containingi uni-
ties, the right-hand part of which, theL subword, containsk
unities @compare with Eqs.~35! and ~36!#.

The productb( i )CN2L
i 2k in Eq. ~47! is a sharp function ofi

with a maximum at some pointi 5 i 0 whereaspi obeys the
linear law~5!. This implies thatpi can be factored out of the
summation sign being taken at pointi 5 i 0. The asymptotical
calculation shows that pointi 0 is described by the equation

i 05
N

2
2

L/2

122m~12L/N! S 12
2k

L D . ~48!

Expression~5! taken at pointi 0 gives the desired formula fo
p(0) because

(
i 5k

k1N2L

b~ i !CL
kCN2L

i 2k ~49!

is obviously equal toWL(k). Thus, we have
06110
f
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p(0)~k!5
1

2
1

mL

N22m~N2L ! S 12
2k

L D . ~50!

Let us consider a very important point relating to Eq.~48!.
If the concentration of unities in the right-hand part of t
word ~36! is higher than 1/2,k/L.1/2, then the most prob
able concentration (i 02k)/(N2L) of unities in the left-hand
part of this word is likewise increased, (i 02k)/(N2L)
.1/2. At the same time, the concentration (i 02k)/(N2L)
is less thank/L,

1

2
,

i 02k

N2L
,

k

L
. ~51!

This implies that the increased concentration of unities in
L words is necessarily accompanied by the existence o
certain tail with an increased concentration of unities as w
Such a phenomenon is referred to by us as themacropersis-
tence. An analysis performed in the following section wi
indicate that the correlation lengthl c of this tail is gN with
g>1 dependent on the parameterm only. It is evident from
the above-mentioned property of the isotropy of the Mark
chain that there are two correlation tails from both sides
the L word.

Note that the distributionWL(k) is a smooth function of
argumentsk and L near its maximum in the case of wea
persistence andk,L2k@1. By going over to the continuou
limit in Eq. ~46! and using Eq.~50! with the relationp(1)(k
21)512p(0)(k21), we obtain the diffusion Fokker
Planck equation for the correlated Markov process,

]W

]L
5

1

8

]2W

]k2
2h~L !

]

]k
~kW!, ~52!

wherek5k2L/2 and

h~L !5
2m

~122m!N12mL
. ~53!

Equation~52! has a solution of the Gaussian form Eq.~39!
with the varianceD(L) satisfying the ordinary differentia
equation,

dD

dL
5

1

4
12h~L !D. ~54!

Its solution, given the boundary conditionD(0)50, coin-
cides with Eq.~40!.

4. Self-similarity of the persistent Brownian diffusion

In this subsection, we point to one of the most interest
properties of the Markov chain being considered, namely
self-similarity. Let us reduce theN-step Markov sequence b
regularly ~or randomly! removing some symbols and intro
duce the decimation parameterl,

l5N* /N<1. ~55!
7-6
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Here N* is a renormalized memory length for the reduc
N* -step Markov chain. According to Eq.~50!, the condi-
tional probability pk* of occurring the symbol zero afterk
unities among the precedingN* symbols is described by th
formula

pk* 5
1

2
1m* S 12

2k

N*
D , ~56!

with

m* 5m
l

122m~12l!
. ~57!

The comparison between Eqs.~5! and ~56! shows that the
reduced chain possesses the same statistical properties
initial one but it is characterized by the renormalized para
eters (N* , m* ) instead of (N, m). Thus, Eqs.~55! and~57!
determine the one-parametrical renormalization of the
rameters of the stochastic process defined by Eq.~5!.

The astonishing property of the reduced sequence con
in that the variance D* (L) is invariant with respect to the
one-parametric decimation transformation~55! and ~57!. In
other words, it coincides with the functionD(L) for the ini-
tial Markov chain:

D* ~L !5
L

4
@11m* ~L21!#5D~L !, L,N* . ~58!

Indeed, according to Eqs.~55! and ~57!, the renormalized
parameterm* 52m* /@N* 22m* (N* 21)# of the reduced
sequence coincides exactly with the parameterm52m/@N
22m(N21)# of the initial Markov chain. Since the shape
the functionWL(k) Eq. ~37! is defined by the invariant pa
rametern5n* , the distributionWL(k) is also invariant with
respect to the decimation transformation.

The transformation (N,m)→(N* ,m* ) Eqs.~55! and~57!,
possesses the properties of semigroup, i.e., the compos
of transformations (N,m)→(N* ,m* ) and (N* ,m* )
→(N** ,m** ) with transformation parametersl1 andl2 is
likewise the transformation from the same semigro
(N,m)→(N** ,m** ), with parameterl5l1l2.

The invariance of the functionD(L) at L,N was referred
to by us as the phenomenon ofself-similarity. It is demon-
strated in Fig. 3 and is accordingly discussed below, in S
IV A.

It is interesting to note that the property of self-similari
is valid for any strength of the persistency. Indeed, the re
Eq. ~50! can be obtained directly from Eqs.~15!–~17!, and
Eq. ~47! not only forn@1 but also for the arbitrary value o
n.

C. Long-range diffusion, LÌN

Unfortunately, the very useful proposition 1 is valid fo
the words of the lengthL<N only and is not applicable to
the analysis of the long words withL.N. Therefore, inves-
tigating the statistical properties of the long words represe
a rather challenging combinatorial problem and requires n
06110
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physical approaches for its simplification. Thus, we start t
subsection by analyzing the correlation properties of the lo
words (L.N) in the Markov chains withN@1. The two
first subsubsections of this subsection mainly deal with
case of relatively weak correlations,n@1.

1. Correlation length at weak persistence

Let us rewrite Eq.~5! in the form

^ai 11&5
1

2
1mS 2

N (
k5 i 2N11

i

^ak&21D . ~59!

The angle brackets denote the averaging of the densit
unities in some region of the Markov chain for its defini
realization. The averaging is performed over distances m
greater than unity but far less than the memory lengthN and
correlation lengthl c @see Eq.~63! below#. Note that this
averaging differs from the statistical averaging over the
semble of realizations of the Markov chain denoted by
bar in Eqs.~8! and ~9!. Equation~59! is a relationship be-
tween the average densities of unities in two different m
roscopic regions of the Markov chain, namely, in the vicin
of ( i 11)th element and in the region (i 2N, i ). Such an
approach is similar to the mean field approximation in t
theory of the phase transitions and is asymptotically exac
N→`. In the continuous limit, Eq.~59! can be rewritten in
the integral form,

^a~ i !&5
1

2
1mS 2

NEi 2N

i

^a~k!&dk21D . ~60!

It has the obvious solution,

K a~ i !2
1

2L 5 K a~0!2
1

2L exp~2 i /gN!, ~61!

FIG. 3. The dependence of the varianceD on the tuple lengthL
for the generated sequence withN5100 andm50.4 ~dotted line!
and for the decimated sequences~the parameter of decimationl
50.5). Squares and circles correspond to the stochastic and d
ministic reduction, respectively. The solid line describes the nonc
related Brownian diffusion,D(L)5L/4.
7-7
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where the parameterg is determined by the relation,

gS expS 1

g D21D5
1

2m
. ~62!

A unique solutiong of the last equation is an increasin
function of mP(0,1/2).

Formula ~61! shows that any fluctuation@the difference
between̂ a( i )& and the equilibrium value ofai51/2] is ex-
ponentially damped at distances of the order of thecorrela-
tion length lc ,

l c5gN. ~63!

Law ~61! describes the phenomenon of thepersistent macro-
scopic correlationsdiscussed in the previous subsectio
This phenomenon is governed by both parameters,N andm.
According to Eqs.~62! and ~63!, the correlation lengthl c
grows asg51/4d with an increase inm ~atm→1/2) until the
inequalityd@1/N is satisfied. Here

d51/22m. ~64!

Let us note that the inequalityd@1/N defining the regime of
weak persistence can be rewritten in terms ofg, g!N/4. At
d'1/N, the correlation lengthl c achieves its maximum
valueN2/4. With the following increase ofm, the diffusion
goes to the regime of strongly correlated diffusion that w
be discussed in Sec. 3 III C.

At m→0, the macropersistence is broken and the co
lation length tends to zero.

2. Correlation function at weak persistence

Using the studied correlation properties of the Mark
sequence and some heuristic reasons, one can obtain th
relation functionK(r ) being defined as

K~r !5aiai 1r2ai
2, ~65!

and then the varianceD(L). Comparing Eq.~65! with Eqs.
~7! and~8! and taking into account the property of sequen
ai51/2, it is easy to derive the general relationship betwe
functionsK(r ) andD(L),

D~L !5
L

2
14(

i 51

L21

(
r 51

L2 i

K~r !. ~66!

Considering Eq.~66! as an equation with respect toK(r ),
one can find its solution,

K~1!5
1

2
D~2!2

1

4
, K~2!5

1

2
D~3!2D~2!1

1

8
,

K~r !5
1

2
@D~r 11!22D~r !1D~r 21!#, r>3. ~67!

This solution has a very simple form in the continuous lim
06110
.

l

-

cor-

,
n

,

K~r !5
1

2

d2D~r !

dr2
. ~68!

Equations~67! and ~43! give the correlation function a
r ,N, n@1,

K~r !5Crm,

with

C151/2, C251/8, C3<r<N51/4,

andm determined by Eq.~44!. In the continuous approxima
tion, the correlation function is described by the formula

K~r !5
m

4
, r<N. ~69!

The independence of the correlation function ofr at r ,N
results from our choice of the conditional probability in th
simplest form~5!. At r .N, the functionK(r ) should de-
crease because of the loss of memory. Therefore, using
~61! and ~63!, let us prolongate the correlatorK(r ) as the
exponentially decreasing function atr .N,

K~r !5
m

4 H 1, r<N,

expS 2
r 2N

l c
D , r .N.

~70!

The solid line in Fig. 4 presents the plot of the correlati
function atm50.1. The value of the correlation function fo
this curve is increased by multiplier 50.

According to Eqs.~68! and ~70!, the varianceD(L) can
be written as

D~L !5
L

4
~11mF~L !!, ~71!

with

FIG. 4. The dependence of the correlation functionK on the
distancer between the symbols for the sequence withN520. The
dots correspond to the generated sequence withm50.1 and m
550/101. The solid line is analytical result~70! with l c5gN and
g50.38.
7-8
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F~L !55
L, L,N,

2~11g!N2~112g!
N2

L

22g2
N2

L F12expS 2
L2N

l c
D G , L.N.

~72!

As an illustration of the result Eq.~71!, we present the
plot of D(L) for N5100 andm50.4 by the dotted line in
Fig. 5. The straight line in the figure corresponds to the
pendenceD(L)5L/4 for the usual Brownian diffusion with
out correlations~for m50). It is clearly seen that the plot o
variance~71! contains two qualitatively different portions
One of them, atL&N, is the superlinear curve that move
away from the lineD5L/4 with an increase ofL as a result
of the persistence. ForL@N, the curveD(L) achieves the
linear asymptotics,

D~L !>
L

4 S 11
4m~11g!

122m D . ~73!

This phenomenon can be interpreted as a result of the d
sion in which everyindependentstep;AD(L) of wandering
represents a path traversed by a particle during the cha
teristic ‘‘fluctuating time’’ L;(N1 l c). Since these steps o
wandering are quasi-independent, the distribution funct
WL(k) is the Gaussian. Thus, in the case of relatively we
persistence,n@1, WL(k) is the Gaussian not only atL,N
@see Eq.~39!# but also forL.N, l c .

Note that the above-mentioned property of the se
similarity is valid only at the portionL,N of the curve
D(L). Since the decimation procedure leads to the decre
of the parameterm @see Eq.~57!#, the plot of asymptotics
~73! for the reduced sequence atL@N* goes below the
D(L) plot for the initial chain.

FIG. 5. The numerical simulation of the dependenceD(L) for
the generated sequence withN5100 andm50.4 ~circles!. The dot-
ted line is the plot of function Eq.~71! with the same values ofN
andm. The solid line describes the noncorrelated Brownian dif
sion,D(L)5L/4.
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3. Statistics of theL words for the case of strong persistence,
n™ lnÀ1N

In this subsection, we study the statistical properties
long words (L.N) in the sequences of symbols with stron
correlations. It is convenient to rewrite formula~5! for the
conditional probability of occurring the symbol zero after t
N word containingk unities in the form,

pn5d12m
n

N
, ~74!

where n is the number of zeros in the precedentN word,
n5N2k.

In the case of strong persistence,n! ln21N, the parameter
d51/22m is much smaller than 1/N. Therefore, the prob-
ability pn can be written as

pn'H d, n50,

n/N, nÞ0, nÞN,

12d, n5N.

~75!

It is seen that the probability of occurring the symbol ze
after theN word which contains only unities (n50) repre-
sents very small valued and it increases significantly ifn
Þ0. This situation differs drastically from the case of we
persistency. Atn@1, the parameterd exceeds noticeably the
value 1/N, and the probabilitypn does not actually chang
with an increase in the number of zeros in the precedingN
word.

The analysis of the symbol generation process in the M
kov chain in the case of strong persistence gives the follo
ing picture of the fluctuations. There exist the entire portio
of the chain consisting of the same symbols, say unities.
characteristic length of such portions is 1/d@N. These por-
tions are separated by one or more symbols zero. The n
ber of such packets of the same symbols in one fluctua
zone is aboutN. Thus, the characteristic correlation distan
at which theN word containing the same symbols conve
into theN word with n5N/2 is aboutN/d,

l c'
N

d
. ~76!

The described structure of the fluctuations defines the
tistical properties of theL words with L.N in the case of
strong persistence. The distribution function differs sign
cantly from the Gaussian and is characterized by a conc
form at L& l c;N/d. As L increases, the correlations be
tween different parts of theL words get weaker and theL
word can be considered as consisting of a number of in
pendent subwords. So, according to the general mathema
theorems@12,17#, the distribution function takes on the usu
Gaussian form. Such an evolution of the distribution functi
is depicted in Fig. 6. Note that the Gaussian form of t
distribution function is the direct consequence of the fini
ness of the correlation length. Thus the Markov chains st
ied in this paper differ essentially from strongly correlat
systems withl c→`, which are widely discussed in litera

-

7-9
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ture. As is known@11#, such systems are characterized by
distribution functions with the power-law tails~the so-called
Levy distributions!.

The varianceD(L) follows the quadratic lawD5L2/4
@see Eq.~45!# up to the range ofL& l c;N/d and then ap-
proaches to the asymptoticsD(L)5BL with B;N/4d ~see
Fig. 7!.

The dotted line in Fig. 4 presents the correlation funct
for the case of strong persistence (m550/101,N520).

IV. RESULTS OF NUMERICAL SIMULATIONS
AND APPLICATIONS

In this section, we support the obtained analytical res
by numerical simulations of the Markov chain with the co
ditional probability Eq.~5!. Besides, the properties of th
studied binaryN-step Markov chain are compared with tho
for the natural objects, specifically for the coarse-grain
written and DNA texts.

A. Numerical simulations of the Markov chain

The first stage of the construction of theN-step Markov
chain was a generation of the initial noncorrelatedN sym-

FIG. 6. The distribution functionw(k/L)5LWL(k) for N58
andd51/150. Different values of the lengthL of words is shown
near the curves.

FIG. 7. The dependence of the varianceD on the word lengthL
for the sequence withN520 andm550/101~dotted line!. The solid
line describes the noncorrelated Brownian diffusion,D(L)5L/4.
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bols, zeros and unities, identically distributed with equ
probabilities 1/2. Each consequent symbol was then adde
the chain with the conditional probability determined by t
previousN symbols in accordance with Eq.~5!. Then we
numerically calculated the varianceD(L) by means of Eq.
~8!. The circles in Fig. 5 represent the calculated varian
D(L) for the case of weak persistence (n512.5@1). A very
good agreement between the analytical result~71! and the
numerical simulation can be observed. The case of str
persistence is illustrated by Figs. 6 and 7 where the distri
tion function WL(k) and the varianceD(L) are calculated
numerically for n54/37 and n50.1, respectively. The
circles on the curves in Fig. 4 represent the calculated res
for the correlation functionK(r ) for n50.1 ~on the dotted
line! andn540 ~near the solid line!.

The numerical simulation was also used for the dem
stration of the proposition 1~Fig. 1! and the self-similarity
property of the Markov sequence~Fig. 3!. The squares in
Fig. 3 represent the varianceD(L) for the sequence obtaine
by the stochastic decimation of the initial Markov chain~dot-
ted line! where each symbol was omitted with the probabil
1/2. The circles in this figure correspond to the regular
duction of the sequence by removing each second symb

And finally, the numerical simulations have allowed us
make sure that we are able to determine the parameteN
andm of a given binary sequence. We generated the Mar
sequences with different parametersN and m and defined
numerically the corresponding curvesD(L). Then we solved
the inverse problem of the reconstruction of the parameteN
andm by analyzing the curvesD(L). The reconstructed pa
rameters were always in good agreement with their p
scribed values. In the following subsections we apply t
ability to the treatment of the statistical properties of litera
and DNA texts.

B. Literary texts

It is well known that the statistical properties of th
coarse-grained texts written in any language exhibit a
markable deviation from random sequences@4,18#. In order
to check the applicability of the theory of the binaryN-step
Markov chains to literary texts, we resorted to the proced
of coarse graining by the random mapping of all charact
of the text onto the binary set of symbols, zeros and unit
The statistical properties of the coarse-grained texts dep
but not significantly, on the kind of mapping. This is illus
trated by the curves in Fig. 8 where the varianceD(L) for
five different kinds of the mapping of Bible is presented.
general, the random mapping leads to nonequal number
unities and zeros,k1 andk0, in the coarse-grained sequenc
A particular analysis indicates that the varianceD(L) ~40!
gets the additional multiplier,

4k0k1

~k01k1!2
,

in this biased case. In order to derive the functionD(L) for
the nonbiased sequence, we divided the numerically ca
lated value of the variance by this multiplier.
7-10
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The study of different written texts has suggested that
of them feature the pronounced persistent correlations.
demonstrated by Fig. 9 where the five variance curves
significantly higher than the straight lineD5L/4. However,
it should be emphasized that regardless of the kind of m
ping the initial portions,L,80, of the curves correspond t
a slight antipersistent behavior~see inset to Fig. 10!. More-
over, for some inappropriate kinds of mapping~e.g., when all
vowels are mapped onto the same symbol! the antipersisten
portions can reach the values ofL;1000. To avoid this
problem, all the curves in Fig. 9 are obtained for the defin
representative mapping: (a–m)→0; (n–z)→1.

Thus the persistence is the common property of the bin
N-step Markov chains that have been considered in this

FIG. 8. The dependenceD(L) for the coarse-grained text o
Bible obtained by means of five different kinds of random mappi
The straight solid line describes the noncorrelated Brownian di
sion,D(L)5L/4.

FIG. 9. The dependenceD(L) for the coarse-grained texts o
collection of works on the computer science (m52.231023, short-
dotted line!, Bible in Russian (m51.931023, dashed line!, Bible
in English (m51.531023, dotted line!, ‘‘History of Russians in the
20th Century’’ by Oleg Platonov (m56.431024, dash-dotted line!,
and ‘‘Alice’s Adventures in Wonderland’’ by Lewis Carroll (m
52.731024, dash-dot-dotted line!. The solid line describes the
noncorrelated Brownian diffusion,D(L)5L/4.
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per and the coarse-grained written texts at large sca
Moreover, the written texts as well as the Markov sequen
possess the property of the self-similarity. Indeed, the cur
in Fig. 10 obtained from the text of Bible with differen
levels of the deterministic decimation demonstrate the s
similarity. Presumably, this property is the mathematical
flection of the well-known hierarchy in the linguistics
letters→syllables→words→sentences→paragraphs→chap-
ters→books.

All the above-mentioned circumstances allow us to s
pose that our theory of the binaryN-step Markov chains can
be applied to the description of the statistical properties
the texts of natural languages. However, in contrast to
generated Markov sequence~see Fig. 5! where the full length
M of the chain is far greater than the memory lengthN, the
coarse-grained texts described by Fig. 9 are of relativ
short lengthM&N. In other words, the coarse-grained tex
are similar not to the Markov chains but rather to some n
stationary short fragments. This implies that each of the w
ten texts is correlated throughout the whole of its leng
Therefore, as far as the written texts are concerned, i
impossible to observe the second portion of the curveD(L)
parallel~in the log-log scale! to the lineD(L)5L/4, similar
to that shown in Fig. 5. As a result, one cannot define
values of both parametersN and m for the coarse-grained
texts. The analysis of the curves in Fig. 6 can give the co
bination m52m/N(122m) only @see Eq.~40!#. Perhaps,
this particular combination is the real parameter govern
the persistent properties of the literary texts.

We would like to note that the origin of the long-rang
correlations in the literary texts is hardly related to the gra
matical rules as is claimed in Ref.@4#. At short scalesL
<80 where the grammatical rules are in fact applicable
character of correlations is antipersistent~see the inset in Fig.
10! whereas semantic correlations lead to the global per
tent behavior of the varianceD(L) throughout the entire of
literary text.

.
-

FIG. 10. The dependence of the varianceD on the tuple length
L for the coarse-grained text of Bible~dotted line! and for the deci-
mated sequences with different parametersl: l53/4 ~squares!, l
51/2 ~stars!, andl51/256~triangles!. The solid line describes the
noncorrelated Brownian diffusion,D(L)5L/4. The inset demon-
strates the antipersistent portion of theD(L) plot for Bible.
7-11



r
a

rig
te
l

or
th
f
r

th
h
o

o

h
o

kin
in

ar
e
r

g
p

e

a-
al
the

C_
f
NA
ary
t

12
uch
es.
ize
the
nd

tion

of
the
r-

e

i-

wn

t

o the

or-
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The numerical estimations of the persistent parametem
and the characterization of the languages and different
thors using this parameter can be regarded as a new int
ing problem of linguistics. For instance, the unpreceden
low value ofm for the very inventive work by Lewis Carrol
as well as the closeness ofm for the texts of English and
Russian versions of Bible are of certain interest.

It should be noted that there exist special kinds of sh
range correlated texts which can be specified by both of
parameters,N andm. For example, all dictionaries consist o
the families of words where some preferable letters are
peated more frequently than in their other parts. Yet ano
example of the shortly correlated texts is any lexicograp
cally ordered list of words. The analysis of written texts
this kind is given below.

C. Dictionaries

As an example, we have investigated the statistical pr
erties of the coarse-grained alphabetical~lexicographically
ordered! list of the most frequently used 15462 Englis
words. In contrast to other texts, the statistical properties
the coarse-grained dictionaries are very sensitive to the
of mapping. If one uses the above-mentioned mapp
(a–m)→0; (n–z)→1, the behavior of the varianceD(L)
similar to that shown in Fig. 9 would be obtained. The p
ticular construction of the dictionary manifests itself if th
preferable letters in the neighboring families of words a
mapped onto the different symbols. The varianceD(L) for
the dictionary coarse-grained by means of such mappin
shown by circles in Fig. 11. It is clearly seen that the gra
of the functionD(L) consists of two portions similar to th
curve in Fig. 5 obtained for the generatedN-step Markov
sequence. The fitting of the curve in Fig. 11 by function~71!
~the curved solid line in Fig. 11! yielded the values of the
parametersN5180 andm50.44.

FIG. 11. The dependenceD(L) for the coarse-grained alphabet
cal list of 15 462 English words~circles!. The curved solid line is
the plot of function Eq.~55! with the fitting parametersN5180 and
m50.44. The straight solid line describes the noncorrelated Bro
ian diffusion,D(L)5L/4.
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D. DNA texts

It is known that any DNA text is written by four ‘‘char-
acters,’’ specifically by adenine~A!, cytosine~C!, guanine
~G!, and thymine~T!. Therefore, there are three nonequiv
lent types of the DNA text mapping onto one-dimension
binary sequences of zeros and unities. The first of them is
so-called purine-pyrimidine rule,$A,G%→0, $C,T%→1. The
second one is the hydrogen-bond rule,$A,T%→0, $C,G%
→1. And, finally, the third is$A,C%→0, $G,T%→1.

By way of example, the varianceD(L) for the coarse-
grained text ofBacillus subtilis, complete genome~ftp://
ftp.ncbi .nih.gov / genomes / bacteria / bacillus _ subti-lis / N
000964.gbk! is displayed in Fig. 12 for all possible types o
mapping. One can see that the persistent properties of D
are more pronounced than for the written texts and, contr
to the written texts, theD(L) dependence for DNA does no
exhibit the antipersistent behavior at small values ofL. In our
view, the noticeable deviation of different curves in Fig.
from each other demonstrates that the DNA texts are m
more complex objects in comparison with the written on
Indeed, the different kinds of mapping reveal and emphas
various types of physical attractive correlations between
nucleotides in DNA, such as the strong purine-purine a
pyrimidine-pyrimidine persistent correlations~the upper
curve!, and the correlations caused by a weaker attrac
A↔T and C↔G ~the middle curve!.

It is interesting to compare the correlation properties
the DNA texts for three different species that belong to
major domains of living organisms: the Bacteria, the A
chaea, and the Eukarya@19#. Figure 13 shows the varianc
D(L) for the coarse-grained DNA texts ofBacillus subtilis
~the Bacteria!, Methanosarcina acetivoransthe~the Archaea!,
and Drosophila melanogaster—fruit fly— ~the Eukarya! for
the most representative mapping$A,G%→0, $C,T%→1. It is
seen that theD(L) curve for the DNA text ofBacillus sub-

-

FIG. 12. The dependenceD(L) for the coarse-grained DNA tex
of Bacillus subtilis, complete genome, for three nonequivalent kinds
of mapping. Dotted, dashed, and dash-dotted lines correspond t
mappings$A,G%→0, $C,T%→1 ~the parameterm54.131022),
$A,T%→0, $C,G%→1 (m52.531022), and$A,C%→0, $G,T%→1
(m51.531022), respectively. The solid line describes the nonc
related Brownian diffusion,D(L)5L/4.
7-12
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SYMBOLIC STOCHASTIC DYNAMICAL SYSTEMS . . . PHYSICAL REVIEW E 68, 061107 ~2003!
tilis is characterized by the highest persistence. As well as
the written texts, theD(L) curves for the DNA of both the
Bacteria and the Archaea do not contain the linear porti
given by Eq.~73!. This suggests that their DNA chains a
not stationary sequences. In this connection, we would
to point out that their DNA molecules are circular and re
resent the collection of extended coding regions interrup
by small noncoding regions. According to Figs. 12 and
the noncoding regions do not disrupt the correlation betw
the coding areas, and the DNA systems of the Bacteria
the Archaea are fully correlated throughout their ent
lengths. Contrary to them, the DNA molecules of the E
karya have the linear structure and contain long noncod
portions. As evident from Fig. 13, the DNA sequence of t
representative of the Eukarya is not entirely correlated. T
D(L) curve for theX chromosome of the fruit fly corre
sponds qualitatively to Eqs.~71! and~72! with m'0.35 and
N'250. If one draws an analogy between the DNA s
quences and the literary texts, the resemblance of the co
lation properties of integral literary novels and the DNA tex
of the Bacteria and Archaea are to be found, whereas

FIG. 13. The dependenceD(L) for the coarse-grained DNA
texts of Bacillus subtilis, complete genome, the Bacteria~dotted
line!; Methanosarcina acetivorans, complete genome, the Archaea
~dashed line!; Drosophila melanogaster chromosome X, compl
sequence, the Eukarya~dash-dotted line! for the mapping$A,G%
→0, $C,T%→1. The solid line describes the noncorrelated Brow
ian diffusion,D(L)5L/4.
ys
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DNA texts of the Eukarya are more similar to the collectio
of 104–105 short stories.

V. CONCLUSION

Thus, we have developed an approach to describing
strongly correlated one-dimensional systems. The simple,
actly solvable model of the uniform binaryN-step Markov
chain is presented. The memory lengthN and the paramete
m of the persistent correlations are two parameters in
theory. The correlation functionK(r ) is usually employed as
the input characteristics for the description of the correla
random systems. Yet, the functionK(r ) describes not only
the direct interconnection of the elementsai and ai 1r , but
also takes into account their indirect interaction via oth
elements. Since our approach operates with the ‘‘origin
parametersN and m, we believe that it allows us to revea
the intrinsic properties of the system which provide the c
relations between the elements.

We have demonstrated the applicability of the develop
theoretical model to the different kinds of relatively weak
correlated stochastic systems. Perhaps, the case of s
persistency is also of interest from the standpoint of poss
applications. Indeed, the domain structure of the sym
fluctuations atn!1 is very similar to the domains in mag
netics. Thus, an attempt to model the magnetic structure
the Markov chains with strongly pronounced persistent pr
erties can be appropriate.

We would like to note that there exist some features of
real correlated systems which cannot be interpreted in te
of our two-parametric model. For example, the interferen
of the grammatical antipersistent and semantic persistent
relations in the literary texts requires more than two para
eters for their description. Obviously, more complex mod
should be worked out for the adequate interpretation of
statistical properties of the DNA texts and other real cor
lated systems. In particular, the Markov chains consisting
more than two different elements~non-binary chains! can be
suitable for modeling the DNA systems.
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